attitude package

Subpackages

Submodules

attitude.bingham module

attitude.bingham.bingham_pdf(fit)[source]

From the Encyclopedia of Paleomagnetism

From Onstott, 1980: Vector resultant: R is analogous to eigenvectors of T. Eigenvalues are analogous to |R|/N.

attitude.bingham.confluent_hypergeometric_function(k1, k2, n=10)[source]
attitude.bingham.regular_grid(**kwargs)[source]

attitude.stereonet module

attitude.stereonet.ellipse(n=1000, adaptive=False)[source]

Get a parameterized set of vectors defining ellipse for a major and minor axis length. Resulting vector bundle has major axes along axes given.

attitude.stereonet.error_coords(axes, covariance_matrix, **kwargs)[source]
attitude.stereonet.error_ellipse(axes, covariance_matrix, **kwargs)[source]
attitude.stereonet.iterative_normal_errors(axes, covariance_matrix, **kwargs)[source]
attitude.stereonet.iterative_plane_errors(axes, covariance_matrix, **kwargs)[source]

An iterative version of pca.plane_errors, which computes an error surface for a plane.

attitude.stereonet.normal_errors(axes, covariance_matrix, **kwargs)[source]

Currently assumes upper hemisphere of stereonet

attitude.stereonet.plane_errors(axes, covariance_matrix, sheet='upper', **kwargs)[source]

kwargs: traditional_layout boolean [True]

Lay the stereonet out traditionally, with north at the pole of the diagram. The default is a more natural and intuitive visualization with vertical at the pole and the compass points of strike around the equator. Thus, longitude at the equator represents strike and latitude represents apparent dip at that azimuth.
attitude.stereonet.quaternion(vector, angle)[source]

Unit quaternion for a vector and an angle

attitude.stereonet.scale_errors(cov_axes, confidence_level=0.95)[source]

Returns major axes of error ellipse or hyperbola, rescaled using chi2 test statistic

attitude.stereonet.sph2cart(lat, lon)[source]

Module contents