Source code for attitude.display.plot.misc
from __future__ import division
import numpy as N
import matplotlib.pyplot as P
import seaborn
[docs]def aligned_residuals(pca):
"""
Plots error components along with bootstrap
resampled error surface. Provides another
statistical method to estimate the variance
of a dataset.
"""
A = pca.rotated()
fig, axes = P.subplots(2,1,
sharex=True, frameon=False)
fig.subplots_adjust(hspace=0, wspace=0.1)
kw = dict(c="#555555", s=40, alpha=0.5)
#lengths = attitude.pca.singular_values[::-1]
lengths = (A[:,i].max()-A[:,i].min() for i in range(3))
titles = (
"Long cross-section (axis 3 vs. axis 1)",
"Short cross-section (axis 3 vs. axis 2)")
for title,ax,(a,b) in zip(titles,axes,
[(0,2),(1,2)]):
seaborn.regplot(A[:,a], A[:,b], ax=ax)
ax.text(0,1,title,
verticalalignment='top',
transform=ax.transAxes)
ax.autoscale(tight=True)
for spine in ax.spines.itervalues():
spine.set_visible(False)
ax.set_xlabel("Meters")
return fig