Source code for attitude.display.plot.misc

from __future__ import division
import numpy as N
import matplotlib.pyplot as P
import seaborn

[docs]def aligned_residuals(pca): """ Plots error components along with bootstrap resampled error surface. Provides another statistical method to estimate the variance of a dataset. """ A = pca.rotated() fig, axes = P.subplots(2,1, sharex=True, frameon=False) fig.subplots_adjust(hspace=0, wspace=0.1) kw = dict(c="#555555", s=40, alpha=0.5) #lengths = attitude.pca.singular_values[::-1] lengths = (A[:,i].max()-A[:,i].min() for i in range(3)) titles = ( "Long cross-section (axis 3 vs. axis 1)", "Short cross-section (axis 3 vs. axis 2)") for title,ax,(a,b) in zip(titles,axes, [(0,2),(1,2)]): seaborn.regplot(A[:,a], A[:,b], ax=ax) ax.text(0,1,title, verticalalignment='top', transform=ax.transAxes) ax.autoscale(tight=True) for spine in ax.spines.itervalues(): spine.set_visible(False) ax.set_xlabel("Meters") return fig